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1. The Two Kinds of Testing

Programs are tested to investigate their behavior, but with two distinct purposes. During
debugging, programs are not correct, so good tests expose their faults, and lead to
understanding. Debug testing is a subject whose theory is mostly sociological: the methods
and quirks of programmer and process are important. In particular, programmers design and
code from specifications, and the faults in a program can often be traced to
rmmnderstandmg at the specification-program interface. With a few exceptions, practical
t&nngsystems,"notauyﬂmthatmewvemgcmemm,arcmndedtoa:dmdebug
testing. Myers [1] has given the best advice for the debug tester: the faults are there—look

L for them. Theoretical investigation of debug testing is properly supported by experiment, and
E these experiments are notoriously difficult to do, because the entire programming process is

- involved, and what works in practice may critically depend on an obscure facet of the process.
Thus we should not expect to generalize beyond the precise situation of the experiment. Such
studies cannot make predictions until the whole of development is better understood, at least

e enough to know what variables to control. And to hope for a theory free of the sociological

b component, a hard science rather than a soft one, is probably fond. Program development

S may not be an art, but it is at least a craft, and so long as people do the development,

i_f debugging the results will depend on the humnan process. Debug testing and validation

b experiments are discussed in Section 2.

The second kind of testing follows debugging, and is intended to establish confidence in
the program’s correctness. So long as tests are exposing faults, looking for faults is a good
plan. When all the tests succeed, debugging is evidently over, but no guide such as Myers’s is
then available to continue. However, the theoretical situation in confidence testing is much
cleaner. The program and its tests are well-defined objects, whose relationship to each other
need not depend on the hurnan process that created them. A number of test criteria have
been developed to capture the idea that success establishes confidence in correctness. Almost
all such measures lead to unsolvable problems, rootedmtheprouemofdecldmgwhctlwrtwo
arbitrary programs have equivalent functional behavior. However, it is not very satisfactory
to define a good test only to show that good tests cannot be generated or recognized
algorithmically. It is more promising to view tests as samples drawn from a program’s
behavior space, and to make probabilistic calculations of the program’s quality based on the
samples. Probabilistic theories get the right kind of answers, but they are quantitatively
wrong: the question of sample independence seems to be the root of the trouble. The
present failings of confidence testing are discussed in Section 3.

There is considerable confusion between debug testing and confidence testing. If one
had a method that established confidence in a program’s correctness, it could certainly be
used for debugging, as follows:

Tests selected for a buggy program would either expose bugs, or predict low confidence
in their absence. In the first case the program needs work; in the second, the test
should be improved. In the process, bugs will be eliminated and confidence will
increase until the software can be released.

Unfortunately, there are no confidence-testing methods that can be used in this way, because
there is no theory that establishes a salid connection to correctness yet does not founder on
undecidability. What happens instead is the following:




Debug testing is done according to some scheme whose implications for program
correctness are entirely unknown. The testing is successful in that bugs are found and
repaired; eventually, no more are found despite considerable effort by the testers. The
composite debug test is then thought to establish confidence in the program.

It is obvious that this practical method is indefensible so long as the relationship between the
methods used and the program’s correctness remains unknown.

As an example of the confusion between debug and confidence testing, a detailed
analysis of partition testing is given in Section 4. Its debug component relies on a part of the
process by which people code from operational specifications; its confidence component is a
proof method involving no testing at all.

The goal of debug-testing theory should be to explain why, in terms of the human
process by which software (and bugs) are created, that a method locates faults. Some way
must be found to eliminate the distorting effect of human cleverness on these explanations. It
is equally important to explain the weak points of a method--the kind of bugs that it likely
fails to find. The goal of confidence-testing theory remains that of finding the relationship

E between a successful test and program correctness. A probabilistic theory will be required, in
_ which the question of test independence is central. Goals and suggestions for future research
are given in Section S.
# 2. The Sociology of Debug Testing

In the absence of a theory that relates test success to program correctness, many excellent test
systems have been devised for debugging. By far the most common tools are the path
analyzers, which report or generate test coverage of the control structure [2, 3]. A test that
fails to cover some path is evidently useless to uncover a fault on that path. On the other
hand, the significance of covering all paths is unknown, beyond the general result that such
coverage is not logically related to correctness. Mutation [4, 5], another structural-coverage
technique (for expressions), is only a bit better: when coverage is less than perfect, bugs
could evade the test; when coverage is perfect, we know only that some particular bugs are
absent. (However, this is the origin of a good idea, faulr-based testing, that does have some
real theory. By restricting attention to particular faults, the theory can sidestep the
sociological question of where those faults came from, and concentrate on the technical
problems of surely finding them [24, 25].) Different structural coverage techniques are
difficult to compare. Some arc cbviously subsumed by others (statement coverage by branch
coverage, for example); some appear to be unrelated (e.g., mutation coverage and path
coverage) [6, 7). In keeping with the practical nature of debug-testing schemes, it is easy to
contrive a useful one that defies even comparative analysis (for example, the variation of path
coverage [8]).

Programming and debug testing are linked by the involvement of clever, dedicated
people who do both. Experiments conducted to establish or compare the efficacy of debug-
testing methods can be entirely misieading, because they fail to contral for this human
involvement, and for the very special form taken by programs built by people. A good name
for the distortion introduced into a testing experiment by these factors is the ''nose-rubbing
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Consider the simplest contral coverage criterion, that every statement of a program
must be used in some test. The conventional explanation for why statement-coverage testing
works is that the coverage leaves bugs no place to hide. But this explanation ignores the
human analysis that goes into finding tests that attain coverage. An unexecuted statement is
examined to see what it does, and this analysis may well uncover some fault in it. Since it
has not been executed, the credit for finding this fault certainly goes to the person, not the
test method. Oncc a missed statement’s purpose is understood, other parts of the software
must be analyzed to see why it was missed, and this requires examination of paths and
predicates that might lead toit. In the process the tester looking for trouble is liable to find
it, but not necessarily trouble related to the unexecuted statement. (Perhaps for an omitted
case that uses this statement, the software works perfectly.) In the “'nose rubbing'’ process a
technical expert, looking for trouble, is forced to examine particular parts of the code, and
there (or nearby) fauits are found. Code being what it is, close study almost always finds
bugs.

It might be instructive to conduct a study of pure nose rubbing. Programmers would be
told that they were evaluating a new testing tool, and would be given programs containing
faults. When these were executed under contral of the "'tool,” an arbitrary pointer into the
code would be printed with an obscure error message. This message would be removed by a
change in the program that repaired any fault, and another generated, until all the known
faults were removed. Pasitive results from such a negative experiment would cast doubt on
naive "‘evaluation’ of testing tools.

Howden [9] has conducted a different kind of empirical study: he applied path analysis
to a few small programs to find its worst-case performance. He counted the method a
success only when the human contribution was climinated--no matter how the paths were
covered, the fault led to an observable failure. An important result of this study was the
difficulty of performing the analysis (necessarily by hand)—the technique cannot be used on
even moderate-size programs, so it is unlikely that the study will be extended. The numerical
results (that path testing necessarily would expose about 65% of the errors in 11 toy programs
from a textbook) cannot be trusted as an evaluation of path testing.

The sociological theory of debug testing must take into account the program "o
development process, and explain the efficacy of bug-finding methods in terms of the human
crafts of design from specification, coding from design, and testing a program against its
specification. As we learn more about the ways people carry out these tasks, we will learn
better debugging methods and why they expose the mistakes people make. An example of
such an analysis is given for partition testing in Section 4.1.

3 Confidence Theory and its Failings

The initial attempts to understand why tests seem to improve the confidence that a program
contains no more faults were related to program correctness. The failure of this "“absolute’
theory has more recently led to the use of probabilistic ideas.
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31 L D crions and Negative Results
Ino.... tc speak precisely, we adopt the functional semantics of Mills [10, 11].

; Definition. The meaning of a program P is the mapping from inputs to outputs it computes;

e this functional meaning is written [P] . If P executes successfully on input x, [P] (x) is its
output. A specification f is a computable function that P should compute. A test T

: consists of a set of input values for P. Since testing is actually to be carried out, T is finite,

. and [P] is defined on T. A test is successfid when each input in T meets the specification.

_ That is,

Wt € T([P] (1) = f(r)).
A specification is effective iff there is a mechanical way of deciding if any given test is
= successful. Program P is correct (with respect to specification f) iff f C [P] .

This definition allows the program-function domain to be larger than that of the
specification—intuitively, by failing to specify what the program should do, no one means to

- require it to blow up.

m The most important definition in testing theory must capture the relation between

[ success of a test and correctness of the tested program. Such tests are what we are seeking.
8 Howden’s definition at first seems to be a direct translation of the intuitive idea:

Definition. A test T is reliable (Howden [9]) iff it cannot succeed without P being
correct:

T successful for P (with respect to f) => P correct.

A basic negative result of testing theory is that the problem of deciding if an arbitrary test is
reliable, is unsolvable.

Theorem: There is no algorithm for deciding of program P and test T whetherornot T
is reliable for P.
Proof. By reduction to the program equivalence problem; see [9, 12, 26).

(It is disturbing that the specification enters these proofs in the form of a program of some
sort, indicating that including the idea of correctness forces any imagined algorithm for
deciding reliability to be imprecise--for how can the specification be "given" to the
algorithm?)

In one pathological case a reliable test does not exist: when program and specification
disagree only because the program blows up where it should not. The points not in the
domain of the program function cannot be part of any test by our requirements.

- Howden’s definition has been criticized [13, 14) because it does not capture an idea
S important in program maintenance: a trivial program change can turn a reliable test into an
unreliable one. If a program is correct, then any test—even the empty test—is reliable. Thus

-
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all the intuitive idea that the test is augmented until it catches all the program faults.

Perhaps it better captures a test expanding to force cormrectness of P to say that if the
test is successful for any program, that program must be indistinguishable from P on the
specified domain. This gets at the idea that a test is lacking if any failure can escape it.

Definition: A test T for program P is valid with respect to specification f iff for each
program Q,

T successful for Q (with respect to f) => @‘Homf=®‘

The definition does not state that P must be correct, or even that T is successful for P,
but we can prove this.

Theorem: If there exists a valid test for P with respect to f, then P is correct (and hence
any test is successful for P).

Proof. Since f is computable, let program Q compxteit,@=f. Suppose that T is
valid for P. Because Q computes f, any test is successful for Q, including T, so .
Icgl-re!gmf=®. But Q computes f,so]m{&mf=f,andhenceﬁ’]=f and P is

Theorem: A valid test is reliable, but a reliable test need not be valid.

Proof. Suppose T is valid for P. Since P is correct, any test is reliable, in particular T.
On the other hand, consider a correct program P with nonempty domain D and the empty
test ¢, which is reliable. ¢ is not valid, because there is a program Q which differs from P
on D, yet ¢ is successful for Q, violating the definition.

The theoretical situation for valid tests is even worse than that for reliable ones: the only
valid tests are exhaustive. This result captures the sense of Dijkstra’s aphorism that tests can
never demonstrate the absence of faults [15].

Theorem: A test is valid for program P with respect to f iff it includes dom f.

Proof. It is obvious that an exhaustive test is valid. On the other hand, suppose that point z
€ dom f is omitted from test T. Then construct Q to be exactly the same as P except
that Q contains an initial test for z which makes their outputs differ at that point alone.
Then T is successful for Q, but since [Q] (z) # [P] (z), T is not valid.

Since tests must be finite sets according to the definition above, only a program for a
specification with finite domain could have an exhaustive test. The requirement that the
program not blow up for any test point causes less trouble than for "'reliable”: although
determining a program’s behavior on arbitrary inputs is an unsolvable problem, human
ingemuity would be used to master it on a given domain.

(''Reliable” and "'valid" have another sense in some literature, notably [16]; however,
the criticism of [17] puts the other definitions out of circulation. )

‘The definition of “test" itself is chosen to make testing algorithmic-—tests can in
principle always be performed. It is desirable that a testing method--a scheme for judging test
points—-have a similar property.
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) Definition: A testing method M is a three-place predicate. M (f, P, T) is defined to hold
] whenthcprogramPwnthq:ecﬁmhonfmb)ectedtotestThasbeentwtedaooordmgtoﬂ)e
method. A testing method is algorithmic iff M can be mechanically evaluated.

’l'hisdeﬁnitionisimpredscinthatmefaminwlﬁchaspeciﬁwtimmightbe&miedtothe
predicate is difficult to imagine. However, so-called ''structural’* methods ignore the

. specification except to require successful tests. Thcnthcdlfﬁcultylstnddenbyamnmng
. effective specification. For example, branch testing has the predicate My(f, P, T) that is true
iff T causes each branch of P to be executed, and T is successful for P. htstmgls

algorithmic for an effective specification, because it is easy to monitor execution of all branch

points. Similarly, mutation testing is algorithmic if equivalent and long-running mutants are
defined to be stillborn. (This assumption cannot be realized in practice.)

= L

If "reliable”” and 'valid" are taken as testing methods, the first cannot be algorithmic by
the theorem that reliability is an undecidable property; the second is algorithmic for finite-
domain specifications by the theorem that an exhaustive test is valid (W1th the heavy proviso
that the specification domain be glven) Algorithmic methods do not in general attain either
- reliability or validity. Validity requires an exhaustive test of a given finite specification
domain. For reliability things are a little more difficult.

Theorem: No algorithmic testing method can always have reliable tests.

Proof. Suppose an algorithmic method with predicate M were available, such that whenever
- M (f, P, T) holds, T is reliable for P. nlentodeaderehahhtyofanarhtmrym'l"for
. program P, find by trial a set T such that M (f, P, T). Success on T means that P is correct.
In that case T is also reliable, since any set is. On the other hand, if T is not successful,
then T" is reliable iff it is nos successful. In any case, the reliability of T has been
determined, contrary to the theorem above. Hence there can be no reliable algorithmic test
method as supposed.

Non-exhaustive algorithmic methods are therefore not useful for confidence testing,
insofar as the ideas of "'reliable”” and "valid" capture the connection between testing and
correctness.

> v w-w_ v .
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3.2 Probabilistic Theories oA

The analogy between program testing and quality-assurance for mass-produced goods is B
extremely attractive. When the final product of an assembly line is to be checked for defects,

the only sure method is to inspect each item. Since this is impractical, samples are inspected, -
5 and the confidence that the sample predicts the quality of an item chosen at random can be —
' obtained from statistical theory. In the analogy, the line samples correspond to program tests, R
from which we would like to calculate the confidence that no faults exist, that is, confidence N
in the success of arbitrary program executions as yet untried.

radically wrong both qualitatively and quantitatively. In the situation that N test points
chosen at random succeed, and one requires 1 - o confidence that the probability of
correctneslsp,thcmnnberofpuntsreqtﬁmd[ﬂ]is

p The analogy must be faulty, however, because the results from the simplest theory are
I
»
e
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The qualitative error is that this result is independent of the form and size of the program
being tested. Experience has shown that the fault count is roughly proportional to program
size [28], and at least for programs with many independent paths, N must then increase with
the program size. The result is also independent of the domain size, and random testing
intuitively should be less effective for large domains. Quantitatively the formula is also

f intuitively wrong, since (for example) it predicts that 45 test points are sufficient to establish
90% confidence that the correctness probability is 0.95.

? Before we analyze the failure to correspond with intuition, it should be noted that the
simple probabilistic theory gives just the right kind of statement. It predicts the result of
executing the tested program, and does so entirely in terms of information about the test and
program. The quantitative results could be used to decide if the program is ready to be
released.

The most obvious place to question the quality-control analogy is in the selection of
"random’’ samples. When products come off an assembly line, all are equal; but some
program inputs are more equal than others. Each program has an "‘operational distribution’
characteristic of its real use, which weights input classes unequally. The simplest statistical
theory demands that to predict confidence bounds for executions drawn from such a
distribution, tests must be drawn from it as well. When the operational distribution is
unknown (as it must be for a new application) the theory cannot be used, because far more
points might be required to cover the real distribution, drawing tests from the wrong one.
Furthermore, input distributions do not help to explain the failures mentioned above: using
the correct distribution it is still unreasonable that the required test size does not depend on
the program or domain size, and the numbers are still wrong.

e

What does it mean for samples from a manufacturing process to be independent? The
essential feature is that there be no correlation between defect-producing operations and the
sample selection. For example, choosing every Nth item from a line scems reasonable until it
is noted that (say) exactly N components arrive at some workstation in a group--the samples
then might all contain the first component from the group, which might be special in some
way. In the testing analogy real independence is very difficult to obtain. Tests do not
penetrate programs in any uniform way, so each actually “'sees’ very little of a large program.
Furthermore, many tests may see the same fragment, for all that they were not selected to do
so. Program fragments are not uniform: they are produced by different people, under
different circumstances, to different standards. To attempt to predict the quality of one by
examining another is obviously foolish. To turn the analogy around, if manufacturing quality
assurance were like program testing, samples would be examined only in part, that part
depending on the choice of sample in a way that might correlate with defects.

This way of looking at quality contral also clarifies the role of test weighting
distributions. In quality control the analogy would be to examine only scattered parts of each
sample, and concentrate on some particular parts. This would subvert the whole purpose of
quality control. which is to discover the source of defects and eliminate it. The inspection
would not be determining that the item was being made correctly, but only that its defects
were not glaring. In the case of programs, testing from an input distribution investigates not
correctness, but how uncommon failures are.

To correct the flaws in sampling theory, some kind of code dependence must be added,
30 that samples cover not only the input space, but the textual program space as well.
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4 Analysis of Partition Testing

Because the idea of correctness comes from program proving, the first testing theories had the
same origin. Proof-based theories might be described as program proof methods that
incorporate tests. It has long been thought that test success might simplify program
verification [18]. For example, for a particular program, it might be possible to construct a
proof of correctness that was based on clever (non-algorithmic) choice of a reliable test. A
person would prove that the test was reliable, then the test would be conducted, and its
success would complete the proof [19]. Or, a person might prove that certain fauits in a

would necessarily lead to failures, then establish their absence by conducting a
successful test [24]. These general methods cannot be criticized, but they do not lead to a
theory of confidence testing. Instead of tests, they really analyze programs.

Beginning with [16], proof-based testing theory has become identified with the much
narrower class of methods called “’partition testing,”" in which the program’s input domain is
broken up into equivalence classes, and test points are selected to cover these classes. The
essential idea is that the equivalence classes should be "treated the same’ by the program and
the specification. This notion has been used in a fault-based theory [17] and in work based
on symbolic execution [21, 22]. We now analyze ''treated the same'’ partitions first as a
confidence-testing idea, then as a debug-testing idea.

4.1 Partition ''Testing'' is a Program-proving ldea

Testing based on input partitions for identical output does lead to correctness, as the
following trivial theorem shows. Define the same-output equivalence relation for a program
P as

PP = {(x,y) | [B] @) = [P} &)3.
Define the same-output equivalence relation for a specification S as

5% = {(x, y) | S(x) = SO)3.

These relations define partitions of the input space, whose intersection classes have members
that are literally treated the same. Members of such a class are all specified to have a single
output, and furthermore do have a single output when supplied to the program. In diagonal
partitions the specified and actual output is the same; in off-diagonal partitions the outputs
differ.

Of course, if partitions are actually to be the source of tests, they must be of finite
index. However, if the definition of a test is relaxed to allow "'infinite” input sets, the results
of this section continue to hold. The case in which the program domain is smaller than the
specification domain deserves special comment. Here there exist inputs for which the
program blows up, but should not. Such inputs occur in no intersection partition, because ;
they are not in any partition of P®. It is the primary virtue of tests arising from
specifications that these inputs not be lost, and this can be arranged by adding an ''undefined”’ o
partition to those of P but not to those of S®. This creates off-diagonal intersection
partitions for failure of definition in P.
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Theorem: A test using an arbitrary element from each intersection partition of the P® and
S relations is successful iff P is correct with respect to S.

Proof. (Correctness as a consequence of test success.) Each of the non-diagonal partitions
must be empty for the test to succeed, because by definition P is in error for all points
therein. Consider then any nonempty diagonal partition D, andany x € D. Somet € D
was involved in the successful test, and hence |[P] (t) = S(t). But by definition of D, S(x) =
S(t)and(x)=IE(t),hencePiscorrect,beame X Wwas an arbitrary input. (The

reverse implication is trivial.)
The proof shows that there is an easier way to state this result:

Corollary: The off-diagonal intersection partitions of P® and S® are empty iff P is
oorrect.

The obvious practical deficiency here is that the P® and S® partitions are seldom of finite
index. For testing, however, the method cannot be used at all, because representatives of the
intersection partitions cannot be obtained in practice. Consider the ''triangle problem’ for
example. Triples of integers (A, B, C) representing triangle sides are to be classified into the
textbook types such as 'obtuse scalene.” The possible outputs are a finite set, and thus $®
determines a natural finite-index input partition. The natural program that solves the
problem has a path corresponding to each possible output, so its path equivalence classes are
the partitions of P®, also of finite index. Choosing a point from a specification partition like
"equilateral” may be easy, and a successful test execution shows that the intersection with the
"equilateral” program partition is not empty. But it does not prove correctness to proceed in
this way, because there is no way to select points in off-diagonal partitions (such as: specified
"equilateral”” but the program prints ''right isosceles’")--indeed, the Corollary states that these
partitions must be empty for correctness.

Thus in its simplest form, use of treated-the-same input classes is a proving technique
that makes no use of testing at all: the off-diagonal partitions must be shown to be empty,
necessarily without testing; then there is no need to try points in the diagonal partitions.

There are natural input partitions for specifications and programs broader than those of
S® and P®. If thesc are of finite index, or have easy-to-find representatives, they are
candidates for a proving method; however, the same argument shows that such partitions are
not useful in a confidence testing method. For example, suppose a first-order logic
specification is of the form

Il (X), 01 (x,y)
LX), O,xy)

ses .4

[,(x), O,(x.y) -]

where the I, are disjoint input assertions, and the corresponding O, are output assertions
for those inputs. Let I describe the specified domain:

I=LVvLV.VIL,




§ = x|Lx /\Jy O/x, y)}

for each 1 <i < n are input partitions for each part of the specification. (The inputs not in
any partition are those for which the specification fails to ¢ xtrain the result at all, because
-! holds;and,tlmgfawlﬁchﬂ\espedﬁcaﬁonasksﬂlehnpom'ble,bemmeﬂlcrcdonot
exist outputs as required.)

If a program P is to meet this specification, similarly let

P, = (x![B] @) = y /\ Ox, y)}
and add

Pn+

to cover the problem with failures described above. Intersecting specification-defined and
program-defined partitions, we obtain classes that are “treated the same'' in a wider sense

1= &x|x¢P,1<i<nj

" than that used above. The same resuits hold and there is the same difficulty in test selection.

The off-diagonal partitions are now those for which some input assertion I, holds, but either
isundcﬁnedor?sanpltfaﬂstosaﬁsfyok;th&arenotwytoidentify. If they can
shown to be empty, the proof of correctness is complete without recourse to tests.

This analysis shows that the idea of "'treated the same'" partitions cannot be used for a
confidence testing theory. Correctness turns on empty error partitions that are difficult to
identify, and unrelated to successful tests on other partitions. With partitions of infinite
index, the non-diagonal number is also infinite, and concentrating on diagonal partitions [22)
does not lead to either a proof of correctness or a confidence test.

4.2 Partition Testing for Debugging

As a debug-testing method, partition testing is valuable, but because of the particular way in
which human beings create programs from specifications. The great virtue of any test based
on a specification is its potential for detecting missing program logic. It is a common

ing blunder to omit cases that the specification requires. Because the chance of
coincidental correctness is small when part of a program has been omitted, any test point in
the specification partition will expose the fault. Furthermore, narrow input partitions which
have both a specification- and program-based meaning are good intellectual tools for
debugging. When a failure occurs for some input, its characterization both locates the fault
(from the program-based partition) and indicates what should be done (from the
specification-based partition).

It is an open question whether program- and specification-based partitions should be
similar (for example, when an operational specification is taken to be prescriptive), or
intentionally different (for example, when a declarative specification technique is used with
conventional programs). In the first case the intersection partitions for a correct program
differ little from the partitions before intersection; in the second case nothing forces this to be
true. Partition boundaries are widely held to be important, because in programming it is
common to blunder by shifting boundaries. When this happens the boundary becomes an
off-diagonal intersection partition. But boundaries have this intuitive significance only when
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the specification is prescriptive. Otherwise input distinctions that “‘should’’ be made have no
significance. For example, for the absolute value function it is common to specify the
[ ] behavior differently for positive and negative inputs. But the programmer who writes

»
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real procedure absval(x); real x; valve x;
absval := sqt(x12)

.
Belidendiendudhin

is not observing the positive-negative distinction, and separating those classes will not help to

- - find bugs for this program. When specification and program partitions are very different, as
b in the DAISTS system [30] using data-type axioms and conventional programs, it is difficult
. to characterize and think about the intersection partitions. It may even be difficult to find

| points in the partitions [23]). The precision of partitions does not suffer, however, and the g

S distinct nature of specification and program makes bug repair easier. In compensation for lost —

intuitive understanding of partitions, the nose-rubbing effect is given maximum play: the v 4

programmer asked to cover an incomprehensible partition is led to study a narrow part of the S

specification and program, and probably to discover bugs there. S

The very properties that make partitions useless for confidence testing are advantages in o
debugging, particularly when specification and program partitions are similar. For example, - 4
in [22] specification and program are both procedural, and partitions are based on path classes -
in each. The specification classes thus have nothing to do with correct behavior, and only ]
serve to distinguish arbitrary cases. Within such partitions points are not “'treated the same," o
but symbalic execution is used to cover all points in a class so selection does not matter.
Where specification and program classes exactly coincide, points have the significance that a _—
ptucnptwespcxﬁmnonwasfdlowed Where they do not, the prospect of failures is good. AR

has not followed the specification, but chosen to do it another way, and that %
raxsmthe possibility of left-out cases, cases treated incorrectly, etc. Each such possibility is
localized in a partition. However, it should be noted that the method performs best when B
there are not very many differences, when the prescriptive specification was followed except —
for a few, unrelated deviations. This is probably just the well-known phenomenon that path —
classes are not helpful in discovering that something is missing from code or specification. B
For example, tltmcthodof[?l]doesmmhbcttcronatnangleprogramthatlsmrlynght
than it does on the original version [3] with the "illegal input'’ logic omitted.

e

Thus the success of partition testing for debugging turns on nose-rubbing when the
specification is unlike the program, and on boundary errors when they are like. In both cases
the precision of the class in which a failure is found is helpful in locating the fault.

5. Goals and Prospects for Testing Theory

"’Absolute and correctness-based” best characterize existing confidence-testing theories. They -
have shown that reliability and validity cannot be established algorithmically, then investigated
restricted cases which can be solved. Perhaps fault-based testing is the most successful such —
theory. The basis in correctness cannot be abandoned in a confidence theory, but the -
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absolute ideas could be replaced with probabilistic ones.
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A confidence theory must at a minimum apply to any particular test situation in which
no failures are observed. It can be argued that no confidence whatsoever can be placed in a
program with known faults, certainly true if its users are malicious. The situation in which a
few obscure failures is tolerated is an important practical one, but the idea of probabilistic
correctness cannot apply to it. We therefore should consider only the release situation:
software does not fail on any test conducted, and since the testers are at their wits’ end, there
& is nothing to do but let the users have it. The primary goal of confidence theory is therefore
& to assign a probability of correctness to any release test. This probability must depend only on _
[ the test situation, although more information about the test and program may have to be EE
'= collected than at present. For example, if a theory involves the textual distribution of tests, =
. as suggested in Section 3.2, then that distribution must be measured. -

B It is possible to perform real experiments to validate a probabilistic confidence testing T
. theory. Software field performance can be compared to predictions of a theory, but there are R
many confounding factors so great care is required. For example, field failures are mostly o]
misunderstandings, and important as these are for the whole process of software development, I
they apply to flaws in documentation and specification, not to release testing. Because S
validation is so difficult, it is important that a testing theory be plausible. Plausibility can be
gained through negative predictions: there are many opportunities for a theory to properly B
assign a low probability of correctness. For example: a large program or a large specification ___J
domain subjected to a small test; a test that fails elementary control or data coverage criteria; s
tests generated by third parties lacking knowledge of the specification and program; *'devil’s =T
advocate'’ tests generated in an attempt to have no significance. All these provide .
opportunities for a confidence theory to denigrate the test, and a plausible theory would do o
S0. g

A sccondary goal of confidence-testing theory is the analysis of testing methods. This ¥ o
does not follow from the ability to analyze the release-test situation. It may happen that the S
analysis is mathematically intractable, in the sense that closed-form descriptions cannot be
obtained for all tests that follow a given method. It can happen that two methods cannot be
compared, because the intra-method variability is larger than the difference between them. If
the arguments in Section 2 are correct, existing methods will be difficult to compare, and will
not establish a high degree of confidence. Such an intuitively correct result would be a
plausibility argument for the theory that can obtain it. As another example of probabilistic
theories giving the right kind of results, an analysis of partition testing vs. random testing [27)
shows that even under conditions favoring partition testing, it does not increase confidence in SRR
the correctness of the program. This agrees with the analysis of Section 4 that partition - -
testing has no confidence component.

Even if there were a plausible confidence-testing theory, it wouldbeunpa‘tantwhavc RO
theories that explain the strengths and weaknesses of debug-testing methods. The primar: N
goal of debug-testing theory is to connect the human programming process, and the faults it .
introduces into programs, with the process of looking for those faults. Perhaps such a theory - -
could be used to eliminate human mistakes, but it is better to build tools that detect them.
Good programming-language compilers use just this idea. Although it might be possible to
analyze syntax errors and through training and discipline eliminate them at the human source, g
it is much better to just make sure they are caught by the compiler. Then the programmer
can concentrate on other things, knowing that blunders will be caught. A debugging S




technique might be based on confidence-testing theory, as suggested in Section 1, but the
theory would give no guidance beyond the information that a successful test of a buggy
program predicts a low probability of correctness. In contrast, an exercise method like branch
testing can be argued to be useful because (for example) it forces tests in which loop code is
executed zero times, and programmers have been known to ignore this case.

In the confusion of debug- and confidence-testing theory, most of the important
questions about debugging have not been asked. For example, a large system might be
constructed as a collection of modules using the technique of information hiding. What kinds
of mistakes do programmers tend to make when following this method? What kind of tests

will expose the faults? Can those tests be conducted module-by-module, or do they
necessarily involve the whole system? The answers to such questions are an important part of e
a debug-testing theory of development using information hiding. -0
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